Aging-US cover art

Aging-US

Aging-US

Written by: Aging-US Podcast
Listen for free

About this listen

Aging-US is dedicated to advancing our understanding of the biological mechanisms that drive aging and the development of age-related diseases. Our mission is to serve as a platform for high-quality research that uncovers the cellular, molecular, and systemic processes underlying aging, and translates these insights into strategies to extend healthspan and delay the onset of chronic disease. Read about the Aging-US Scientific Integrity Process: https://aging-us.com/scientific-integrityAll rights reserved Science
Episodes
  • Chocolate Compound Linked to Slower Biological Aging
    Jan 20 2026
    When we think of aging, we often picture wrinkles or gray hair. But aging also occurs deep within our cells. One key area of research focuses on “epigenetic aging,” the gradual changes in how DNA is regulated over time. These changes are tracked using tools called epigenetic clocks, which estimate a person’s biological age based on specific molecular markers in the blood. Unlike chronological age, biological age reflects the body’s functional state and can be influenced by health, lifestyle, and environmental factors. While chocolate and coffee have been associated with better health outcomes, pinpointing the responsible specific compounds has been difficult. These foods contain multiple bioactive substances that are often consumed together, and few studies have explored their individual effects on the human epigenome, the system of chemical modifications that control gene activity and change with age. A recent study provides new insight, suggesting that theobromine, a compound naturally found in cocoa, may be associated with slower biological aging in humans. The Study: Investigating Theobromine and Epigenetic Aging in TwinsUK and KORA Cohorts The research titled “Theobromine is associated with slower epigenetic ageing,” was led by Ramy Saad from King’s College London and Great Ormond Street Hospital for Children NHS Foundation Trust, alongside Jordana T. Bell from King’s College London. The study was recently published in Aging-US. Full blog - https://aging-us.org/2026/01/chocolate-compound-linked-to-slower-biological-aging/ Paper DOI - https://doi.org/10.18632/aging.206344 Corresponding authors - Ramy Saad - ramy.saad@kcl.ac.uk, and Jordana T. Bell - jordana.bell@kcl.ac.uk Abstract video - https://www.youtube.com/watch?v=S0P1USM8L6E Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206344 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, theobromine, epigenetic aging, DNA methylation, metabolomics, nutrition To learn more about the journal, visit https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 Facebook - https://www.facebook.com/AgingUS/ X - https://twitter.com/AgingJrnl Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ YouTube - https://www.youtube.com/@Aging-US Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    Show More Show Less
    5 mins
  • How Aging Leads to Disease: New Two-Stage Model Explains Age-Related Illness
    Jan 20 2026
    BUFFALO, NY — January 20, 2026 — A new #review was #published in Volume 17, Issue 12 of Aging-US on December 30, 2025, titled “Aging as a multifactorial disorder with two stages.” “This article is a contribution to the special issue of Aging celebrating the life and work of Misha Blagosklonny (more formally, Mikhail Vladimirovich Blagosklonny), who died in October 2024.” In this review, David Gems and Alexander Carver from University College London, together with Yuan Zhao from Queen Mary University of London, present a new theoretical model to explain how aging leads to the development of chronic diseases. Drawing on evolutionary theory and biological research, the authors propose that aging is driven by a combination of early-life damage and harmful genetic activity in later life. This framework helps explain why diseases such as cancer, arthritis, and infections often appear in old age and offers insight into how they might be prevented. Aging is the biggest risk factor for most chronic diseases, but the biological reasons for this association are still debated. The authors address this by introducing a two-stage model. In the first stage, individuals experience disruptions early in life, such as infections, injuries, or genetic mutations. Although the body can often contain or repair this damage, it does not fully eliminate it. In the second stage, which begins in later life, normal genetic processes begin to act in ways that are no longer beneficial. These late-life changes weaken the body’s ability to contain earlier damage, allowing it to develop into disease. The review emphasizes that aging is a multifactorial process, shaped by many interacting causes rather than a single underlying mechanism. The model suggests that early-life disruptions and later-life genetic activity work together to drive age-related diseases. For example, dormant viruses can re-emerge as infections like shingles due to weakened immunity in older adults. Similarly, injuries to joints in youth can lead to osteoarthritis as tissues change with age. Inherited mutations may also remain silent for decades before contributing to conditions such as cancer or fibrosis later in life. This two-stage model builds on long-standing ideas from evolutionary biology, particularly the theory that aging occurs because natural selection has less influence in later life. The authors also draw on studies in the roundworm Caenorhabditis elegans, where early mechanical damage can lead to fatal infections in old age, suggesting similar patterns may occur in humans. Overall, this review presents a new framework for understanding how different causes of aging interact over time. By identifying two key stages, early-life damage and late-life genetic activity, it highlights potential strategies for promoting healthier aging through prevention and targeted intervention. DOI - https://doi.org/10.18632/aging.206339 Corresponding author - David Gems - david.gems@ucl.ac.uk Abstract video - https://www.youtube.com/watch?v=d4TSI4Ot3yM Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206339 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, C. elegans, disease, hyperfunction, multifactorial model To learn more about the journal, please visit https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 X - https://twitter.com/AgingJrnl Facebook - https://www.facebook.com/AgingUS/ Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ YouTube - https://www.youtube.com/@Aging-US Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    Show More Show Less
    4 mins
  • Age-Related Changes in Sperm DNA May Play a Role in Autism Risk
    Jan 16 2026
    BUFFALO, NY — January 16, 2026 — A new #research paper was #published in Volume 17, Issue 12 of Aging-US on December 29, 2025, titled “Age-specific DNA methylation alterations in sperm at imprint control regions may contribute to the risk of autism spectrum disorder in offspring.” The study – selected as our Editors’ Choice for January, 2026 – was led by first authors Eugenia Casella and Jana Depovere, with corresponding author Adelheid Soubry from the University of Leuven. The research shows that a man’s age is linked to specific changes in sperm DNA that may influence early development in children. These findings are relevant as autism diagnoses have increased while many men are becoming fathers later in life. Autism spectrum disorder is a growing public health concern affecting millions of families worldwide. The study focused on DNA methylation, a natural process that helps regulate how genes function without changing the DNA sequence itself. DNA methylation plays a key role during early development and can be sensitive to age-related biological changes. Researchers analyzed sperm samples from 63 healthy, non-smoking men between the ages of 18 and 35. DNA methylation was measured at hundreds of thousands of locations across the genome. The analysis identified more than 14,000 DNA sites where methylation levels changed with age, with most showing a gradual decrease as men got older. “To identify sperm-specific marks, we conducted an epigenome-wide association study in sperm from 63 men, using the Illumina 450K array.” While individual changes were small, their location within the genome was important. Many age-related changes occurred near imprint control regions, which help ensure that certain genes are active only from one parent. These regions are established during sperm development and are usually maintained after fertilization. Disruptions in these regions may affect how genes are regulated in offspring. Researchers found that several genes affected by age-related DNA changes have previously been linked to autism. These genes are involved in brain development, nerve communication, and early growth. Changes in their regulation may increase vulnerability to neurodevelopmental differences. Overall, the findings provide new biological insight into earlier evidence linking paternal age to child health. However, the authors note that autism is a complex condition shaped by many genetic and non-genetic factors, and no single cause has been identified. The study results suggest that age-related changes in sperm DNA may be one contributing factor. By clarifying how paternal age influences sperm biology, this research supports future studies in reproductive health as family planning increasingly shifts toward later parenthood. DOI - https://doi.org/10.18632/aging.206348 Corresponding author - Adelheid Soubry - adelheid.soubry@kuleuven.be Abstract video - https://www.youtube.com/watch?v=XC3p49Uw49w Sign up for free Altmetric alerts about this article - https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.206348 Subscribe for free publication alerts from Aging - https://www.aging-us.com/subscribe-to-toc-alerts Keywords - aging, epigenome, sperm, 450K, imprinting, autism To learn more about the journal, please visit https://www.Aging-US.com​​ and connect with us on social media at: Bluesky - https://bsky.app/profile/aging-us.bsky.social ResearchGate - https://www.researchgate.net/journal/Aging-1945-4589 X - https://twitter.com/AgingJrnl Facebook - https://www.facebook.com/AgingUS/ Instagram - https://www.instagram.com/agingjrnl/ LinkedIn - https://www.linkedin.com/company/aging/ Reddit - https://www.reddit.com/user/AgingUS/ Pinterest - https://www.pinterest.com/AgingUS/ YouTube - https://www.youtube.com/@Aging-US Spotify - https://open.spotify.com/show/1X4HQQgegjReaf6Mozn6Mc MEDIA@IMPACTJOURNALS.COM
    Show More Show Less
    4 mins
No reviews yet