ML - EP 13 : प्रमुख डीप लर्निंग आर्किटेक्चर
Failed to add items
Sorry, we are unable to add the item because your shopping basket is already at capacity.
Add to cart failed.
Please try again later
Add to wishlist failed.
Please try again later
Remove from wishlist failed.
Please try again later
Follow podcast failed
Unfollow podcast failed
-
Narrated by:
-
Written by:
About this listen
जो कृत्रिम बुद्धिमत्ता का एक उपक्षेत्र है जिसने कई क्षेत्रों में क्रांति ला दी है। यह कनवोल्यूशनल न्यूरल नेटवर्क (CNNs), रिकरेंट न्यूरल नेटवर्क (RNNs), लॉन्ग शॉर्ट-टर्म मेमोरी नेटवर्क (LSTMs), जनरेटिव एडवरसैरियल नेटवर्क (GANs), और ऑटोएनकोडर सहित पाँच प्रमुख स्थापत्य कलाओं की संरचनाओं, कार्यक्षमताओं और वास्तविक दुनिया के अनुप्रयोगों की व्याख्या करता है। यह पाठ स्पष्ट करता है कि सीएनएन छवियों के लिए उपयोग किए जाते हैं, आरएनएन और एलएसटीएम अनुक्रमिक डेटा को संभालते हैं, जीएएन नया डेटा उत्पन्न करते हैं, और ऑटोएनकोडर डेटा को संपीड़ित करने और शोर को हटाने के लिए उपयोग किए जाते हैं। अंत में, यह विभिन्न वास्तुशिल्पों के बीच अंतर और उन्हें वास्तविक दुनिया में कैसे संयोजित किया जाता है, इस बारे में अक्सर पूछे जाने वाले प्रश्नों का उत्तर देता है।
No reviews yet