Showing results for "Transfer" in Science & Engineering
-
-
Transfer für die Ohren: Der Podcast der REAB Bayern für alle, die Bildung in Kommunen gestalten
- Written by: Regionale Entwicklungsagentur für kommunales Bildungsmanagement (REAB) Bayern
- Original Recording
-
Overall0
-
Performance0
-
Story0
Herzlich Willkommen bei „Transfer für die Ohren: Der Podcast der REAB Bayern für alle, die Bildung in Kommunen gestalten". In unserer Podcast-Reihe diskutieren wir mit Gästen aus Wissenschaft, Kommunen und Fachpraxis zu aktuellen Themen und innovativen Ideen rund um die kommunale Bildungslandschaft und das datenbasierte kommunale Bildungsmanagement (DKBM). Wir wünschen Ihnen nun viel Spaß beim Hören. Lassen Sie sich inspirieren von den Ideen unserer Gäste und den Impulsen aus den Diskussionen! Weiterführende Informationen zu den jeweiligen Themen finden Sie in den Shownotes der ...
Failed to add items
Sorry, we are unable to add the item because your shopping basket is already at capacity.Add to cart failed.
Please try again laterAdd to wishlist failed.
Please try again laterRemove from wishlist failed.
Please try again laterFollow podcast failed
Unfollow podcast failed
-
-
-
Multiply Transfer Radio
- Written by: multiplytransfer.com
- Original Recording
-
Overall0
-
Performance0
-
Story0
The only podcast 100% focused on Learning Transfer and turning learning into improved performance. This podcast is for people in L&D who want to design and deliver effective training and help others to grow through learning. For more on the science of transfer and actionable approaches to maximise performance visit multiplytransfer.com
Failed to add items
Sorry, we are unable to add the item because your shopping basket is already at capacity.Add to cart failed.
Please try again laterAdd to wishlist failed.
Please try again laterRemove from wishlist failed.
Please try again laterFollow podcast failed
Unfollow podcast failed
-
-
-
Tensorflow transfer learning EfficientNet on Stanford dogs
- Written by: tensorflow
- Original Recording
-
Overall0
-
Performance0
-
Story0
in Mandarin/zh, with EfficientNet, with pretrained weights, freeze all the weights, then you can add your top, then fit/train, you can reach satisfied accuracy with very limited training time/epochs; then unfreeze the layers -20: of non BN layers, change its trainable to True, then fit, you can get even better accuracy with very few like 10 epochs. So this is called transfer learning.
Failed to add items
Sorry, we are unable to add the item because your shopping basket is already at capacity.Add to cart failed.
Please try again laterAdd to wishlist failed.
Please try again laterRemove from wishlist failed.
Please try again laterFollow podcast failed
Unfollow podcast failed
-